skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pal, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This study presents an advanced multi-view drone swarm imaging system for the three-dimensional characterization of smoke plume dispersion dynamics. The system comprises a manager drone and four worker drones, each equipped with high-resolution cameras and precise GPS modules. The manager drone uses image feedback to autonomously detect and position itself above the plume, then commands the worker drones to orbit the area in a synchronized circular flight pattern, capturing multi-angle images. The camera poses of these images are first estimated, then the images are grouped in batches and processed using Neural Radiance Fields (NeRF) to generate high-resolution 3D reconstructions of plume dynamics over time. Field tests demonstrated the system's ability to capture critical plume characteristics including volume dynamics, wind-driven directional shifts, and lofting behavior at a temporal resolution of about 1 s. The 3D reconstructions generated by this system provide unique field data for enhancing the predictive models of smoke plume dispersion and fire spread. Broadly, the drone swarm system offer a versatile platform for high resolution measurements of pollutant emissions and transport in wildfires, volcanic eruptions, prescribed burns, and industrial processes, ultimately supporting more effective fire control decisions and mitigating wildfire risks. 
    more » « less
    Free, publicly-accessible full text available April 29, 2026
  2. The planted densest subgraph detection problem refers to the task of testing whether in a given (random) graph there is a subgraph that is unusually dense. Specifically, we observe an undirected and unweighted graph on n vertices. Under the null hypothesis, the graph is a realization of an Erdös-R{\'e}nyi graph with edge probability (or, density) q. Under the alternative, there is a subgraph on k vertices with edge probability p>q. The statistical as well as the computational barriers of this problem are well-understood for a wide range of the edge parameters p and q. In this paper, we consider a natural variant of the above problem, where one can only observe a relatively small part of the graph using adaptive edge queries. For this model, we determine the number of queries necessary and sufficient (accompanied with a quasi-polynomial optimal algorithm) for detecting the presence of the planted subgraph. We also propose a polynomial-time algorithm which is able to detect the planted subgraph, albeit with more queries compared to the above lower bound. We conjecture that in the leftover regime, no polynomial-time algorithms exist. Our results resolve two open questions posed in the past literature. 
    more » « less
  3. PICO bubble chambers have exceptional sensitivity to inelastic dark matter-nucleus interactions due to a combination of their extended nuclear recoil energy detection window from a few keV to O(100 keV) or more and the use of iodine as a heavy target. Inelastic dark matter-nucleus scattering is interesting for studying the properties of dark matter, where many theoretical scenarios have been developed. This study reports the results of a search for dark matter inelastic scattering with the PICO-60 bubble chambers. The analysis reported here comprises physics runs from PICO-60 bubble chambers using CF3I and C3F8. The CF3I run consisted of 36.8 kg of CF3I reaching an exposure of 3415 kg-day operating at thermodynamic thresholds between 7 and 20 keV. The C3F8 runs consisted of 52 kg of C3F8 reaching exposures of 1404 kg-day and 1167 kg-day running at thermodynamic thresholds of 2.45 keV and 3.29 keV, respectively. The analysis disfavors various scenarios, in a wide region of parameter space, that provide a feasible explanation of the signal observed by DAMA, assuming an inelastic interaction, considering that the PICO CF3I bubble chamber used iodine as the target material. 
    more » « less
  4. Free, publicly-accessible full text available March 1, 2026